VT-2412: VETERINARY PATHOLOGY IV

Cuyahoga Community College

Viewing: VT-2412: Veterinary Pathology IV

Board of Trustees:

October 2024

Academic Term:

Fall 2025

Subject Code

VT - Veterinary Technology

Course Number:

2412

Title:

Veterinary Pathology IV

Catalog Description:

Veterinary medical laboratory procedures performed commonly in veterinary practices including urinalysis, vaginal cytology, ear cytology, cytology of tissues and fluids, bone marrow evaluation, serology, coagulation tests and necropsy.

Credit Hour(s):

2

Lecture Hour(s):

1

Lab Hour(s):

3

Requisites

Prerequisite and Corequisite

VT-2402 Veterinary Pathology II.

Outcomes

Course Outcome(s):

Perform a complete urinalysis including evaluation of physical properties, specific gravity, chemical properties, and microscopic sediment examination.

Objective(s):

- 1. Explain the effects of various methods of urine collection on the results of a urinalysis.
- 2. Identify the normal physical and chemical properties of urine in each of the common domestic species.
- 3. Determine and report the physical properties of a urine sample including color, clarity, and odor and explain the significance of abnormal findings.
- 4. Determine and report the specific gravity of a urine sample and explain its significance.
- 5. Perform and report a biochemical exam using reagent strips and confirmatory tests and explain clinically important biochemical characteristics of urine.
- 6. Prepare and examine unstained and stained urinary sediment.
- 7. Identify, quantify, and report significant findings in urinary sediment including cells, casts, crystals, microorganisms, and miscellaneous sediment.
- 8. Differentiate normal and abnormal urinalysis results and identify results that are indicative of emergency situations that need to be brought to the immediate attention of the attending veterinarian.

Course Outcome(s):

Perform serologic, coagulation, and other ancillary assays required to diagnose clinically important diseases in domestic animals.

Objective(s):

- Collect and process blood for coagulation testing and perform in-house coagulation tests such as mucosal bleeding time, fibrinogen, activated clotting time, activated partial thromboplastin time (APTT)APTT, and prothrombin time (PT)PT.
- 2. Explain the indications for and methodology of commonly used serologic tests including enzyme-linked immunosorbent assay (ELISA)ELISA tests, slide or card agglutination tests, and antibody titers.
- 3. Explain the role of the polymerase chain reaction test in identification of disease-causing agents.

Course Outcome(s):

Perform a necropsy dissection and tissue collection on a non-preserved animal.

Objective(s):

- 1. Explain the principles and procedures for performing a complete necropsy on a domestic or exotic animal.
- 2. Describe procedures for collection, storage, and shipment of samples for histopathology and toxicological examination.
- 3. Describe the special procedures including specimen preparation and submission used whenever an animal is suspected of dying of rabies or other zoonosis.

Course Outcome(s):

Perform a complete diagnostic workup on a patient.

Objective(s):

- 1. Prepare, process, and store urine, cytology, fluid, tissue, and blood samples for both in-house testing and shipping to external laboratories.
- 2. Prepare, complete, and submit paper and electronic requisition forms.
- 3. Perform a complete laboratory evaluation including a complete blood count (CBC), profile, urinalysis, and clotting screen on a patient as ordered by the attending veterinarian.
- 4. Ensure accurate and precise diagnostic information through quality control procedures.
- 5. Differentiate normal and abnormal laboratory results and identify results that are indicative of emergency situations that need to be brought to the immediate attention of the attending veterinarian.

Course Outcome(s):

Collect, prepare, and evaluate cytologic samples.

Objective(s):

- 1. Describe collection techniques for obtaining cytologic samples by abdominocentesis, thoracentesis, tracheal wash, arthrocentesis, and cerebrospinal fluid (CSF) tap.
- 2. Describe the properties of normal and abnormal body fluids including transudates and exudates.
- 3. Identify the necessary equipment for bone marrow biopsy and assist with sampling, preparation, and evaluation.
- 4. Obtain, prepare, and evaluate otic cytology samples and report results.
- 5. Obtain, prepare, and evaluate vaginal cytology samples and report results.
- 6. Prepare and evaluate tissue cytologic samples obtained by impression smear or needle aspirate.

Methods of Evaluation:

- 1. Lecture and laboratory quizzes
- 2. Lecture and laboratory unit examinations
- 3. Comprehensive lecture and laboratory examinations
- 4. Sample collection and preparation
- 5. Homework assignments
- 6. Presentations

Course Content Outline:

- 1. Introduction to the urinalysis
 - a. The four parts of the urinalysis
 - b. Urine specimen collection, handling, and storage
 - i. Timing of collection
 - ii. Containers and the volume needed
 - iii. Collection by midstream void, expression, cystocentesis, and catheterization
 - iv. Principles of sample handling
 - v. Changes in urine over time
 - vi. Specimen preservation
- 2. Quality assurance
 - a. Standardization of processing, equipment, and reporting procedures
 - b. Quality control strips
- 3. Urinalysis-Macroscopic examination
 - a. Normal and abnormal color
 - b. Normal and abnormal odor
 - c. Normal and abnormal clarity
 - d. Species idiosyncrasies
- 4. Urinalysis-Specific gravity (SG) determination
 - a. Using a refractometer to measure SG
 - b. Normal SG for the common domestic species
 - c. Causes of abnormal SG
 - d. The significance of isosthenuria
- 5. Urinalysis-Biochemical analysis
 - a. Chemical constituents of the urine
 - i. pH
 - ii. Protein
 - iii. Glucose
 - iv. Ketones
 - v. Blood/hemoglobin/myoglobin
 - vi. Bilirubin
 - vii. Urobilinogen
 - b. Normal values for each constituent
 - c. Causes of abnormal values for each constituent
 - d. Use of reagent strips
 - i. Factors that affect results
 - ii. False positive and false negative results
 - e. Confirmatory tests
 - i. Sulfosalicylic acid test
 - ii. Ictotest
 - iii. Acetest
- 6. Microscopic examination of the urine sediment
 - a. Preparation of the sediment
 - b. Setting up the microscope for wet preps
 - c. Evaluation for red blood cells RBCs, white blood cells WBCs, renal cells, transitional cells, and squamous cells
 - i. Reporting findings
 - ii. Differentiation of each cell type from similar objects
 - iii. Normal values for each cell type
 - iv. Recognition of each cell type
 - v. Evaluation for hyaline, granular, cellular, waxy, and fatty casts
 - 1. Origin of and significance of casts
 - 2. General appearance of casts and differentiation of types
 - 3. Normals for each cast type
 - 4. Differentiation of casts from similar objects
 - 5. Reporting findings
 - vi. Evaluation for crystals
 - 1. Significance of and behavior of urinary crystals
 - 2. General appearance of crystals and differentiation from other objects
 - 3. Magnesium ammonium phosphate (MAP or struvite) crystals

- 4. Amorphous crystals
- 5. Calcium carbonate crystals
- 6. Calcium oxalate dihydrate and monohydrate crystals
- 7. Urate crystals
- 8. Bilirubin crystals
- 9. Other uncommon crystals
- 10. Reporting findings
- vii. Evaluation for Microorganisms
 - 1. Origin of and significance of bacteria, yeast, and fungi
 - 2. General appearance of bacteria, yeast, and fungi
 - 3. Differentiation of microorganisms from similar objects
 - 4. Reporting findings
- viii. Evaluation for Miscellaneous Sediment
 - 1. Significance of miscellaneous sediment
 - 2. Fat droplets
 - 3. Parasites and parasite eggs
 - 4. Sperm
 - 5. Artifacts and contaminants
- 7. Tissue cytology
 - a. Collection of cytology samples
 - i. Fine needle biopsy
 - ii. Imprint (impression smear)
 - iii. Scraping
 - iv. Preparation of cytology samples
 - 1. Compression preparation
 - 2. Modified compression preparation
 - 3. Starfish preparation
 - v. Submitting and staining cytology smears
- 8. Fluid cytology
 - a. Collection of body fluids
 - i. Abdominal paracentesis
 - ii. Thoracentesis
 - iii. Transtracheal wash
 - iv. CSF and joint taps
 - b. Preparation of body cavity fluids
 - i. Wedge smear
 - ii. Line smear
 - iii. Combination smear
 - iv. Concentration by centrifugation
 - c. Submitting and staining fluid samples
 - d. Fluid sample evaluation
 - i. Normal body cavity fluids
 - ii. Transudates
 - iii. Modified transudates
 - iv. Chylous effusion
 - v. Exudates
- 9. Otic cytology
 - a. Sample collection
 - b. Sample preparation
 - c. Microscopic examination
 - d. Significant findings
 - i. Bacteria
 - ii. Yeast
 - iii. Ear mites
 - iv. Inflammatory cells
 - v. Findings in a normal ear
 - vi. Findings in an abnormal ear
 - vii. Reporting results
- 10. .Bone marrow biopsy

- a. Indications
- b. Equipment
- c. Site selection and preparation
- d. Marrow collection
- e. Preparation of the sample
- f. Evaluation
- 11. Vaginal cytology
 - a. Review of the estrus cycle
 - b. Sample collection
 - c. Preparation
 - d. Evaluation
 - i. Appearance of vaginal epithelial cells
 - ii. Interpretation of results
 - e. Reporting results
- 12. Tissue sample evaluation
 - a. What a pathologist looks for
 - b. Microscopic characteristics of inflammatory lesions
 - i. Common inflammatory lesions
 - c. Microscopic characteristics of neoplastic lesions
 - i. Criteria of malignancy
 - d. Common malignancies
 - i. Epithelial cell tumors
 - ii. Mesenchymal cell tumors
 - iii. Round cell tumors
- 13. Necropsy
 - a. Indications
 - b. Handling the body
 - c. Equipment
 - d. Necropsy procedure
 - e. Sample collection
 - i. Microbiologic samples
 - ii. Tissue samples
 - iii. Toxicologic samples
 - f. Sample preparation and tissue fixatives
 - g. Storing and shipping samples
 - h. Handling rabies suspects
- 14. Coagulation tests
 - a. Blood coagulation
 - i. Mechanical phase
 - ii. Coagulation cascade
 - iii. Causes of coagulation defects
 - iv. Signs of a coagulation defect
 - v. Hereditary coagulation disorders
 - vi. Acquired coagulation disorders
 - b. Coagulation tests
 - i. Blood collection for coagulation testing
 - ii. Activated partial thromboplastin time (APTT)
 - iii. One-stage prothrombin time (PT)
 - iv. Protein induced by vitamin K absence or antagonist (PIVKA) test
 - v. Fibrin degradation products
 - vi. Activated clotting time
 - vii. Bleeding time
 - viii. Fibrinogen
 - ix. Degradation product of crosslinked fibrin (D-Dimer) and fibrin degradation products
- 15. Serology
 - a. Antigens and antibodies
 - b. Sample collection and preparation
 - c. Common serologic tests

- 6
- i. ELISA antigen and antibody tests
- ii. Competitive-inhibition enzyme-linked immunospecific assay (CELISA) antigen test
- iii. Radioimmunoassay
- iv. Latex agglutination
- v. Immunodiffusion
- vi. Fluorescent antibody test
- vii. Antibody titers

Resources

Sirois, Margi. Laboratory Procedures for Veterinary Technicians. 7th. St. Louis: Elsevier, 2019.

Valenciano, Amy C. and Rick L. Cowell. Cowell and Tyler's Diagnostic Cytology and Hematology of the Dog and Cat. 5th ed. St. Louis: Elsevier, 2020.

Bassert, Joanna M. Angela D. Beal, and Oreta M. Samples. *McCurnin's Clinical Textbook for Veterinary Technicians*. 10th. St. Louis: Elsevier, 2021.

Raskin, Rose E. and Denny Meyer. Canine and Feline Cytology: A Color Atlas and Interpretation Guide. 3rd ed. St. Louis: Elsevier, 2016.

Harvey, John. Veterinary Hematology: A Diagnostic Guide and Color Atlas. 1st ed. St. Louis: Elsevier, 2012.

Sink, Carolyn, and Nicole M. Weinstein. Practical Veterinary Urinalysis. 1st ed. Ames: Wiley Blackwell, 2012.

Latimer, Kenneth, and Keith Prasse. *Duncan Prasse's Veterinary Laboratory Medicine Clinical Pathology.* 5th ed. Ames: Wiley Blackwell, 2011.

Osborne, Carl, and Jerry Stevens. *Urinalysis: A Clinical Guide to Compassionate Patient Care.* 1st ed. Leverkusen: Bayer Corporation and Bayer AG Leverkusen, 1999.

Chew, Dennis, and Stephen DeBartola. Interpretation of Canine and Feline Urinalysis. 1st ed. Wilmington: The Gloyd Group, Inc., 1998.

Resources Other

Today's Veterinary Practice https://todaysveterinarypractice.com/
Clinician's Brief http://www.cliniciansbrief.com// (http://www.cliniciansbrief.com/)
DVM360 http://www.dvm360.com/
https://go.atdove.org/ videos and lectures
https://learn.idexx.com/ (https://learn.idexx.com/learn/) videos and articles

Top of page Key: 4468